Reducing Soot Nanoparticles and NOX Emissions in CRDI Diesel Engine by Incorporating TiO2 Nano-Additives into Biodiesel Blends and Using High Rate of EGR

Author:

Fayad Mohammed A.1ORCID,Sobhi Mohammed2ORCID,Chaichan Miqdam T.1ORCID,Badawy Tawfik3ORCID,Abdul-Lateef Wisam Essmat4,Dhahad Hayder A.5,Yusaf Talal6ORCID,Isahak Wan Nor Roslam Wan7ORCID,Takriff Mohd S.8,Al-Amiery Ahmed A.17ORCID

Affiliation:

1. Energy and Renewable Energies Technology Center, University of Technology—Iraq, Baghdad 10066, Iraq

2. Madina Higher Institute for Engineering and Technology, Cairo 11765, Egypt

3. Mechanical Power Engineering Department, Cairo University, Cairo 12613, Egypt

4. Electromechanical Engineering Department, University of Technology—Iraq, Baghdad 10066, Iraq

5. Mechanical Engineering Department, University of Technology—Iraq, Baghdad 10066, Iraq

6. School of Engineering and Technology, Central Queensland University, Brisbane, QLD 4008, Australia

7. Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43000, Selangor, Malaysia

8. Chemical and Water Desalination Engineering Program, Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 26666, United Arab Emirates

Abstract

The developments in the field of nano-additives have increased in the recent years due to the desire to reduce the level of exhaust emissions in diesel engines. The soot characteristics of particulate matter (PM) and nitrogen oxides (NOX) were experimentally investigated using two concentrations of titanium dioxide (TiO2) as nano-additives (25 ppm and 40 ppm) blended with C20D (composed of 20% castor oil methyl ester and 80% diesel fuel) and 30% exhaust gas recirculation (EGR). The combustion of C20D + TiO2 increases brake thermal efficiency (BTE) by 2.8% in comparison with neat C20D, while a significant reduction was obtained in BSFC 6.5% and NOX emissions were maintained at a level parallel with diesel. The results indicated that the technique involving a high EGR rate and the addition of 25 ppm and 40 ppm of TiO2 nanoparticles to the C20D exhibits better reductions in NOX emissions by 17.34% and 21.83%, respectively, compared to the technique comprising the use of C20D + TiO2 and C20D. The reduction in the total concentration of PM via the addition of TiO2 nanoparticles to the C20D was 26.74% greater than neat C20D and diesel. In contrast, the incorporation of a high rate of EGR with C20D +TiO2 increased the PM concentrations by 16.85% compared to the technique without EGR. Furthermore, the high concentrations of TiO2 nanoparticles (40 ppm) in the C20D produced 19 nm smaller soot nanoparticles compared to the 23 nm larger soot nanoparticles produced from the low concentrations of TiO2 nanoparticles (25 ppm) added into the C20D. The current investigation reveals that the reduction in NOX emissions and the production of soot nanoparticles notably improved due to the synergic effect of EGR, the TiO2 nanoparticles, and biodiesel.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3