Analysis and Design of a New High Voltage Gain Interleaved DC–DC Converter with Three-Winding Coupled Inductors for Renewable Energy Systems

Author:

Chen Shin-Ju1ORCID,Yang Sung-Pei12ORCID,Huang Chao-Ming1ORCID,Huang Ping-Sheng1

Affiliation:

1. Department of Electrical Engineering, Kun Shan University, Tainan 710303, Taiwan

2. Green Energy Technology Research Center, Kun Shan University, Tainan 710303, Taiwan

Abstract

In this article, a new non-isolated interleaved DC–DC converter is proposed to provide a high voltage conversion ratio in renewable energy systems. The converter configuration is composed of a two-phase interleaved boost converter integrating a voltage-lift capacitor and three-winding coupled inductor-based voltage multiplier modules to achieve high step-up voltage conversion and reduce voltage stresses on the semiconductors (switches and diodes). The converter can achieve a high voltage conversion ratio when working at a proper duty ratio. The voltage stresses on the switches are significantly lower than the output voltage, which enables engineers to adopt low-voltage-rating MOSFETs with low on-state resistance. The switches can turn on under zero-current switching (ZCS) conditions because of the leakage inductor series reducing switching losses. Some diodes can naturally turn off under ZCS conditions to alleviate the reverse–recovery issue and to reduce reverse–recovery losses. The input current has small ripples due to the interleaved operation. The leakage inductor energy is recycled and voltage spikes on the switches are avoided. The proposed converter is suitable for applications in which high voltage gain, high efficiency and high power are required. The principle of operation, steady-state analysis and design considerations of the proposed converter are described in detail. In addition, a closed-loop controller is designed to reduce the effect of input voltage fluctuation and load change on the output voltage. Finally, a 1000 W laboratory prototype is built and tested. The theoretical analysis and the performance of the proposed converter were validated by the experimental results.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3