Abstract
This paper presents the development of metallic thermoresistive thin film, providing an innovative solution to dynamically control the temperature during the injection molding process of polymeric parts. The general idea was to tailor the signal response of the nitrogen- and oxygen-doped titanium-copper thin film (TiCu(N,O))-based transducers, in order to optimize their use in temperature sensor devices. The results reveal that the nitrogen or oxygen doping level has an evident effect on the thermoresistive response of TiCu(N,O) films. The temperature coefficient of resistance values reached 2.29 × 10−2 °C−1, which was almost six times higher than the traditional platinum-based sensors. In order to demonstrate the sensing capabilities of thin films, a proof-of-concept experiment was carried out, integrating the developed TiCu(N,O) films with the best response in an injection steel mold, connected to a data acquisition system. These novel sensor inserts proved to be sensitive to the temperature evolution during the injection process, directly in contact with the polymer melt in the mold, demonstrating their possible use in real operation devices where temperature profiles are a major parameter, such as the injection molding process of polymeric parts.
Subject
General Materials Science
Reference33 articles.
1. Advances in Polymer Nanocomposites: Types and Applications;Gao,2012
2. Progress Report on Natural Fiber Reinforced Composites
3. Filling Process in Injection Mold: A Review
4. Bioplastics and Vegetal Fiber Reinforced Bioplastics for Automotive Applications;Rusu,2011
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献