Analysis of One-Dimensional Ivshin–Pence Shape Memory Alloy Constitutive Model for Sensitivity and Uncertainty

Author:

Islam A B M RezaulORCID,Karadoğan ErnurORCID

Abstract

Shape memory alloys (SMAs) are classified as smart materials due to their capacity to display shape memory effect and pseudoelasticity with changing temperature and loading conditions. The thermomechanical behavior of SMAs has been simulated by several constitutive models that adopted microscopic thermodynamic or macroscopic phenomenological approaches. The Ivshin–Pence model is one of the most popular SMA macroscopic phenomenological constitutive models. The construction of the model requires involvement of parameters that possess inherent uncertainty. Under varying operating temperatures and loading conditions, the uncertainty in these parameters propagates and, therefore, affects the predictive power of the model. The propagation of uncertainty while using this model in real-life applications can result in performance discrepancies or failure at extreme conditions. In this study, we employed a probabilistic approach to perform the sensitivity and uncertainty analysis of the Ivshin–Pence model. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods were used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. It is evident that the model’s prediction of the SMA stress–strain curves varies due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most influential parameters at several temperatures.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3