CMADS and CFSR Data-Driven SWAT Modeling for Impacts of Climate and Land-Use Change on Runoff

Author:

Du Bailin12ORCID,Wu Lei123,Ruan Bingnan12,Xu Liujia12ORCID,Liu Shuai12

Affiliation:

1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, China

2. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Xianyang 712100, China

3. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Xianyang 712100, China

Abstract

Climate and land-use change significantly impact hydrological processes and water resources management. However, studies of runoff simulation accuracy and attribution analysis in large-scale basins based on multi-source data and different scenario projections are limited. This study employed the Soil and Water Assessment Tool (SWAT) model in conjunction with spatial interpolation techniques to evaluate the accuracy of Climate Forecast System Reanalysis (CFSR), China Meteorological Assimilation Driven Dataset (CMADS), and observation (OBS) in runoff simulations, and configured various scenarios using the Patch-generating Land-use Simulation (PLUS) model to analyze effects of climate and land-use changes on runoff in the Jing River Basin from 1999 to 2018. Results demonstrated the superior performance of the CMADS+SWAT model compared to than CFSR+SWAT model, as the latter underestimated peak runoff. Changes in precipitation had a stronger impact on runoff than temperature, with increased flow from farmland and strong interception effects from forestland. Integrated climate and land-use changes led to an average annual runoff reduction of 1.24 m3/s (I2), primarily attributed to climate change (1.12 m3/s, I3), with a small contribution from land-use change (0.12 m3/s, I4). CMADS exhibited robust applicability under diverse scenarios, effectively enhancing runoff simulation accuracy. The findings provide invaluable guidance for water resources management in semi-arid regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3