Effects of Patch Density and Incoming Sediment on Flow Characteristics and Bed Morphology

Author:

Wang Dan1,Li Feng2,Yang Kejun1

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

2. Chongqing Xike Consultation for Water Transport Co., Ltd., Chongqing 400042, China

Abstract

This study focuses on the effects of vegetation patch density, bed condition, and incoming sediment on flow structure and bed morphology within and around a patch. The variation in upstream adjustment velocity is not well defined for low-density vegetation patches but decreases with increasing patch density in high-density patches. The length of the upstream adjustment region is greater for high-density vegetation. Incoming sediment causes a reduction in both the steady wake velocity and the length of the steady wake at a low density. The length of the recovery region increases with density when vegetation is sparse, but remains constant in a dense patch. Additionally, the length of the recovery region decreases due to incoming sediment. Turbulent kinetic energy is not affected by the bedform and incoming sediment when reaching its first peak. However, the second maximum of the turbulent kinetic energy increases when the bed is movable. The evolution of bed morphology is closely related to the flow structure and the growth of the von Karman vortex street. Both the rising length and the adjusted length decrease with increasing patch density, while the incoming sediment causes an increase in the adjusted length. Behind the patch wake, the first minimum elevation, maximum elevation, and second minimum elevation decrease as the patch density increases. These values, in turn, increase with the sediment supply upstream of the flume.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3