Abstract
Trust plays an essential role in all human relationships. However, measuring trust remains a challenge for researchers exploring psychophysiological signals. Therefore, this article aims to systematically map the approaches used in studies assessing trust with psychophysiological signals. In particular, we examine the numbers and frequency of combined psychophysiological signals, the primary outcomes of previous studies, and the types and most commonly used data analysis techniques for analyzing psychophysiological data to infer a trust state. For this purpose, we employ a systematic mapping review method, through which we analyze 51 carefully selected articles (studies focused on trust using psychophysiology). Two significant findings are as follows: (1) Psychophysiological signals from EEG(electroencephalogram) and ECG(electrocardiogram) for monitoring peripheral and central nervous systems are the most frequently used to measure trust, while audio and EOG(electro-oculography) psychophysiological signals are the least commonly used. Moreover, the maximum number of psychophysiological signals ever combined so far is three (2). Most of which are peripheral nervous system monitoring psychophysiological signals that are low in spatial resolution. (3) Regarding outcomes: there is only one tool proposed for assessing trust in an interpersonal context, excluding trust in a technology context. Moreover, there are no stable and accurate ensemble models that have been developed to assess trust; all prior attempts led to unstable but fairly accurate models or did not satisfy the conditions for combining several algorithms (ensemble). In conclusion, the extent to which trust can be assessed using psychophysiological measures during user interactions (real-time) remains unknown, as there several issues, such as the lack of a stable and accurate ensemble trust classifier model, among others, that require urgent research attention. Although this topic is relatively new, much work has been done. However, more remains to be done to provide clarity on this topic.
Subject
Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献