A Multimodal Facial Emotion Recognition Framework through the Fusion of Speech with Visible and Infrared Images

Author:

Siddiqui Mohammad Faridul Haque,Javaid Ahmad Y.ORCID

Abstract

The exigency of emotion recognition is pushing the envelope for meticulous strategies of discerning actual emotions through the use of superior multimodal techniques. This work presents a multimodal automatic emotion recognition (AER) framework capable of differentiating between expressed emotions with high accuracy. The contribution involves implementing an ensemble-based approach for the AER through the fusion of visible images and infrared (IR) images with speech. The framework is implemented in two layers, where the first layer detects emotions using single modalities while the second layer combines the modalities and classifies emotions. Convolutional Neural Networks (CNN) have been used for feature extraction and classification. A hybrid fusion approach comprising early (feature-level) and late (decision-level) fusion, was applied to combine the features and the decisions at different stages. The output of the CNN trained with voice samples of the RAVDESS database was combined with the image classifier’s output using decision-level fusion to obtain the final decision. An accuracy of 86.36% and similar recall (0.86), precision (0.88), and f-measure (0.87) scores were obtained. A comparison with contemporary work endorsed the competitiveness of the framework with the rationale for exclusivity in attaining this accuracy in wild backgrounds and light-invariant conditions.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

Reference122 articles.

1. Facial Action Coding System;Ekman,1977

2. Facial Action Coding System: The Manual on CD ROM;Ekman,2002

3. FACS investigator’s guide;Ekman,2002

4. EmoNets: Multimodal deep learning approaches for emotion recognition in video

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3