Strain-Induced Graphitization Mechanism of Coal-Based Graphite from Lutang, Hunan Province, China

Author:

Wang ,Cao ,Peng ,Ding ,Li

Abstract

Anthracite and coal-based graphite (CBG) samples were collected at varying distances from a granite intrusion. Optical microscopy, X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structural evolution of CBG at different scales. The results indicated differences in the graphitization rates of coal macerals and crystallization degree of different graphite-like particles. Differentiated graphitization of coal was caused by deformation, which led to the discontinuous distribution of CBG. This indicates that samples located at the same distance from the intrusion were graphitized to different degrees or that CBG with a similar graphitization degree occurred at varying distances from the intrusion. A possible mechanism for graphitization is strain-induced graphitization, where the local stress concentration leads to preferred orientations of the basic structure units (BSUs), as well as the motion and rearrangement of structural defects, resulting in the formation of a locally ordered structure. The graphitization degree is enhanced as the local graphite structure spreads.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3