Proposed Methodology to Evaluate CO2 Capture Using Construction and Demolition Waste

Author:

Martín ,Flores-Alés ,Aparicio

Abstract

Since the Industrial Revolution, levels of CO2 in the atmosphere have been constantly growing, producing an increase in the average global temperature. One of the options for Carbon Capture and Storage is mineral carbonation. The results of this process of fixing are the safest in the long term, but the main obstacle for mineral carbonation is the ability to do it economically in terms of both money and energy cost. The present study outlines a methodological sequence to evaluate the possibility for the carbonation of ceramic construction waste (brick, concrete, tiles) under surface conditions for a short period of time. The proposed methodology includes a pre-selection of samples using the characterization of chemical and mineralogical conditions and in situ carbonation. The second part of the methodology is the carbonation tests in samples selected at 10 and 1 bar of pressure. The relative humidity during the reaction was 20 wt %, and the reaction time ranged from 24 h to 30 days. To show the effectiveness of the proposed methodology, Ca-rich bricks were used, which are rich in silicates of calcium or magnesium. The results of this study showed that calcite formation is associated with the partial destruction of Ca silicates, and that carbonation was proportional to reaction time. The calculated capture efficiency was proportional to the reaction time, whereas carbonation did not seem to significantly depend on particle size in the studied conditions. The studies obtained at a low pressure for the total sample were very similar to those obtained for finer fractions at 10 bars. Presented results highlight the utility of the proposed methodology.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3