Contact Compliance Based Visual Feedback for Tool Alignment in Robot Assisted Bone Drilling

Author:

Yen Ping-LangORCID,Chen Yu-Jui

Abstract

In recent decades, robot-assisted surgery has been proven superior at providing more accurate outcomes than the conventional one, particularly in minimally invasive procedures. However, there are still limitations to these kinds of surgical robots. Accurate bone drilling on the steep and hard surface of cortical bone is still challenging. The issues of slipping away from the target entry point on the bone surface and subsequently deviating from the desired path are still not completely solved. Therefore, in this paper, a force control is proposed to accompany the resolved motion rate controller in a handheld orthopedic robot system. The force control makes it possible to adjust the contact compliance of the drill to the bone surface. With the proper contact compliance, the drill can be prevented from deflecting in contact with the bone surface, and will eventually be directed to the target entry point. The experiments on test jig and vertebra phantom also show that the robot under the proposed contact compliance visual feedback control structure could produce better usability positioning accuracy under various contact disturbances than its counterpart.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3