An Improved Spectral Subtraction Method for Eliminating Additive Noise in Condition Monitoring System Using Fiber Bragg Grating Sensors

Author:

Liu Qi12ORCID,Yu Yongchao12ORCID,Han Boon Siew12,Zhou Wei12ORCID

Affiliation:

1. Schaeffler Hub for Advanced Research at NTU, 61 Nanyang Dr, ABN-B1b-11, Singapore 637460, Singapore

2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

The additive noise in the condition monitoring system using fiber Bragg grating (FBG) sensors, including white Gaussian noise and multifrequency interference, has a significantly negative influence on the fault diagnosis of rotating machinery. Spectral subtraction (SS) is an effective method for handling white Gaussian noise. However, the SS method exhibits poor performance in eliminating multifrequency interference because estimating the noise spectrum accurately is difficult, and it significantly weakens the useful information components in measured signals. In this study, an improved spectral subtraction (ISS) method is proposed to enhance its denoising performance. In the ISS method, a reference noise signal measured by the same sensing system without working loads is considered the estimated noise, the same sliding window is used to divide the power spectrums of the measured and reference noise signals into multiple frequency bands, and the formula of spectral subtraction in the standard SS method is modified. A simulation analysis and an experiment are executed by using simulated signals and establishing a vibration test rig based on the FBG sensor, respectively. The statistical results demonstrate the effectiveness and feasibility of the ISS method in simultaneously eliminating white Gaussian noise and multifrequency interference while well maintaining the useful information components.

Funder

Agency for Science, Technology and Research

Schaeffler Hub for Advanced Research at NTU

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3