Author:
Liu Haiying,Pei Yuncheng,Bei Qiancheng,Deng Lixia
Abstract
At present, the detection-based pedestrian multi-target tracking algorithm is widely used in artificial intelligence, unmanned driving cars, virtual reality and other fields, and has achieved good tracking results. The traditional DeepSORT algorithm mainly tracks multiple pedestrian targets continuously, and can keep the ID unchanged. The applicability and tracking accuracy of the algorithm need to be further improved during tracking. In order to improve the tracking accuracy of the DeepSORT method, we propose a novel algorithm by revising the IOU distance metric in the matching process and integrating Feature Pyramid Network (FPN) and multi-layer pedestrian appearance features. The improved algorithm is verified on the public MOT-16 dataset, and the tracking accuracy of the algorithm is improved by 4.1%.
Subject
Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献