Heat and Flow Study of the Internally Finned Tubes with Different Fin Geometries

Author:

Bellos EvangelosORCID,Lykas PanagiotisORCID,Tzivanidis ChristosORCID

Abstract

Heat and flow enhancement is a critical weapon for the design of highly efficient, compact, and cost-effective devices. The objective of this analysis is the detailed examination of the implementation of different fin shapes on the internal side of a tube aiming the heat and flow enhancement. The reference empty tube is examined, while the use of circular, rectangular, and triangular fins is also studied. Different simulations were conducted with a developed computational fluid dynamic model, and the results were expressed in heat and flow terms. The developed model was validated by comparing the results with the theoretical expressions for the Nusselt number, as well as for the friction factor. The obtained results were evaluated by calculating the heat convection coefficient, the pressure drop, the Nusselt number, the friction factor, the pump work, the mean wall temperature, and the Bejan number. According to the calculations, the use of rectangular fins is the best solution; the use of triangular fins is the second choice, while the less efficient improvement method is the use of circular internal fins. Regarding the heat transfer enhancement, the rectangular fins lead to 36% enhancement, circular fins to 25%, and triangular fins to 23% compared to the reference tube.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3