Inland Lakes Mapping for Monitoring Water Quality Using a Detail/Smoothing-Balanced Conditional Random Field Based on Landsat-8/Levels Data

Author:

Wei Lifei,Zhang Yu,Huang Can,Wang Zhengxiang,Huang Qingbin,Yin Feng,Guo Yue,Cao Liqin

Abstract

The sustainable development of water resources is always emphasized in China, and a set of perfect standards for the division of inland water environment quality have been established to monitor water quality. However, most of the 24 indicators that determine the water quality level in the standards are non-optically active parameters. The weak optical characteristics make it difficult to find significant correlations between the single parameters and the remote sensing imagery. In addition, traditional on-site testing methods have been unable to meet the increasingly extensive water-quality monitoring requirements. Based on the above questions, it’s meaningful that the supervised classification process of a detail-preserving smoothing classifier based on conditional random field (CRF) and Landsat-8 data was proposed in the two study areas around Wuhan and Huangshi in Hubei Province. The random forest classifier was selected to model the association potential of the CRF. The results (the first study area: OA = 89.50%, Kappa = 0.841; the second study area: OA = 90.35%, Kappa = 0.868) showed that the water-quality monitoring based on CRF model is feasible, and this approach can provide a reference for water-quality mapping of inland lakes. In the future, it may only require a small amount of on-site sampling to achieve the identification of the water quality levels of inland lakes across a large area of China.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3