Holocene Fire Regime Changes in the Southern Lake Baikal Region Influenced by Climate-Vegetation-Anthropogenic Activity Interactions

Author:

Barhoumi ChéïmaORCID,Vogel Marianne,Dugerdil Lucas,Limani Hanane,Joannin Sébastien,Peyron Odile,Ali Ahmed Adam

Abstract

Catastrophic fire years that have taken place during the last decade in Siberia, and more generally within the boreal forest, have been directly linked to global warming and had strong repercussions on boreal ecosystems and human populations. In this context the study of the past dynamics of these fires is essential for understanding their links with climate, vegetation and human activity changes on longer time scales than the last few decades. However, few studies on fire dynamics are available for Siberia, and none have been conducted for the entire Holocene period. This study presents the first fire history reconstruction of this area during the Holocene based on charcoals sequestered in sediments of two lakes located on the southern shore of Lake Baikal, in Siberia. The results show a similar trend in the two lakes, with high frequency and high peak magnitude during the Early Holocene and low magnitudes after 6500 cal. yr BP. This difference is interpreted as crown fires versus surface fires. According to pollen records (Dulikha, Vydrino, Ochkovoe) available near the studied lakes, a vegetation transition occurred at the same time. Picea obovata, which has a tree structure prone to crown fires, was dominant during the Early humid Holocene. After 6500 cal. yr BP, conditions were drier and Pinus sylvestris and Pinus sibirica became the dominant species; their tree structure favors surface fires. In addition to vegetation dynamics, the nearby pollen sequence from Dulikha has been used to provide quantitative estimates of past climate, indicating an Early to Middle Holocene climatic optimum between 8000 and 5000 cal. yr BP and an increase in temperatures at the end of the Holocene. These results have been compared to outputs from regional climate models for the Lake Baikal latitudes. Fire dynamics appear to have been more linked to the vegetation than climatic conditions. Over the past 1500 years, the greater presence of human populations has firstly resulted in an increase in the fire frequency, then in its maintenance and finally in its suppression, which may possibly have been due to very recent fire management, i.e., after ca 500 cal. BP.

Funder

Belmont Forum Project PREREAL

Publisher

MDPI AG

Subject

Forestry

Reference86 articles.

1. Boreal forest;Chapin,2001

2. Ecology of North America;Chapman,2015

3. Fire in Ecosystems of Boreal Eurasia

4. Fire, ecosystems and people: Threats and strategies for global biodiversity conservation;Shlisky;Arlingt. Nat. Conserv.,2007

5. A comparison of Canadian and Russian boreal forest fire regimes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3