Quantification of the Direct Solar Impact on Some Components of the Hydro-Climatic System

Author:

Mares Constantin,Mares IleanaORCID,Dobrica Venera,Demetrescu Crisan

Abstract

This study addresses the causal links between external factors and the main hydro-climatic variables by using a chain of methods to unravel the complexity of the direct sun–climate link. There is a gap in the literature on the description of a complete chain in addressing the structures of direct causal links of solar activity on terrestrial variables. This is why the present study uses the extensive facilities of the application of information theory in view of recent advances in different fields. Additionally, by other methods (e.g., neural networks) we first tested the existent non-linear links of solar–terrestrial influences on the hydro-climate system. The results related to the solar impact on terrestrial phenomena are promising, which is discriminant in the space-time domain. The implications prove robust for determining the causal measure of climate variables under direct solar impact, which makes it easier to consider solar activity in climate models by appropriate parametrizations. This study found that hydro-climatic variables are sensitive to solar impact only for certain frequencies (periods) and have a coherence with the Solar Flux only for some lags of the Solar Flux (in advance).

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3