Abstract
Dynamic flux balance models (DFBM) are used in this study to infer metabolite concentrations that are difficult to measure online. The concentrations are estimated based on few available measurements. To account for uncertainty in initial conditions the DFBM is converted into a variable structure system based on a multiparametric linear programming (mpLP) where different regions of the state space are described by correspondingly different state space models. Using this variable structure system, a special set membership-based estimation approach is proposed to estimate unmeasured concentrations from few available measurements. For unobservable concentrations, upper and lower bounds are estimated. The proposed set membership estimation was applied to batch fermentation of E. coli based on DFBM.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献