The Design and Implementation of a Secure Datastore Based on Ethereum Smart Contract

Author:

Aldyaflah Izdehar M.1,Zhao Wenbing1ORCID,Upadhyay Himanshu2,Lagos Leonel2

Affiliation:

1. Department of Electrical Engineering and Computer Science, Cleveland State University, Cleveland, OH 44115, USA

2. Applied Research Center, Florida International University, Miami, FL 33174, USA

Abstract

In this paper, we present a secure datastore based on an Ethereum smart contract. Our research is guided by three research questions. First, we will explore to what extend a smart-contract-based datastore should resemble a traditional database system. Second, we will investigate how to store the data in a smart-contract-based datastore for maximum flexibility while minimizing the gas consumption. Third, we seek answers regarding whether or not a smart-contract-based datastore should incorporate complex processing such as data encryption and data analytic algorithms. The proposed smart-contract-based datastore aims to strike a good balance between several constraints: (1) smart contracts are publicly visible, which may create a confidentiality concern for the data stored in the datastore; (2) unlike traditional database systems, the Ethereum smart contract programming language (i.e., Solidity) offers very limited data structures for data management; (3) all operations that mutate the blockchain state would incur financial costs and the developers for smart contracts must make sure sufficient gas is provisioned for every smart contract call, and ideally, the gas consumption should be minimized. Our investigation shows that although it is essential for a smart-contract-based datastore to offer some basic data query functionality, it is impractical to offer query flexibility that resembles that of a traditional database system. Furthermore, we propose that data should be structured as tag-value pairs, where the tag serves as a non-unique key that describes the nature of the value. We also conclude that complex processing should not be allowed in the smart contract due to the financial burden and security concerns. The tag-based secure datastore designed this way also defines its applicative perimeter, i.e., only applications that align with our strategy would find the proposed datastore a good fit. Those that would rather incur higher financial cost for more data query flexibility and/or less user burden on data pre- and post-processing would find the proposed database too restrictive.

Funder

US Department of Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3