Smart Grid Theft Detection Based on Hybrid Multi-Time Scale Neural Network

Author:

Sun Yuefei1,Sun Xianbo1,Hu Tao1,Zhu Li1

Affiliation:

1. School of Intelligent Science and Engineering, Hubei Minzu University, Enshi 455000, China

Abstract

Despite the widespread use of artificial intelligence-based methods in detecting electricity theft by smart grid customers, current methods suffer from two main flaws: a limited amount of data on electricity theft customers compared to that on normal customers and an imbalanced dataset that can significantly affect the accuracy of the detection method. Additionally, most existing methods for detecting electricity theft rely solely on one-dimensional electricity consumption data, which fails to capture the periodicity of consumption and overlooks the temporal correlation of customers’ electricity consumption based on their weekly, monthly, or other time scales. To address the mentioned issues, this paper proposes a novel approach that first employed a time series generative adversarial network to balance the dataset by generating synthetic data for electricity theft customers. Then, a hybrid multi-time-scale neural network-based model was utilized to extract customers’ features and a CatBoost classifier was applied to achieve classification. Experiments were conducted on a real-world smart meter dataset obtained from the State Grid Corporation of China. The results demonstrated that the proposed method could detect electricity theft by customers with a precision rate of 96.64%, a recall rate of 96.87%, and a significantly reduced false detection rate of 3.77%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Temporal Convolutional Networks for Electricity Theft Detection with Limited Data;British Journal of Computer, Networking and Information Technology;2024-08-23

2. Data-Driven Approaches for Energy Theft Detection: A Comprehensive Review;Energies;2024-06-20

3. A Hybrid Deep Learning Neural Network Model and Data-Driven Methods for Smart Grid Theft Detection;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3