Experimental Study on the Dip Angle Effect of Layered Cemented Fillers: A Sandblasting Treatment Applied to Mine Filling

Author:

Hai Long1,Bao Rongtao1

Affiliation:

1. School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China

Abstract

In order to study the effect of interlayer dip angle on the mechanical properties of tail sand cemented filler and to improve the deterioration of the mechanical properties of the filler caused by delamination, this study introduces the sandblasting method for treating the interface between old and new concretes in concrete science. Two types of delamination, natural delamination and sandblasting delamination, were produced for the tailing sand cemented filler specimens, and the interlayer dip angles were set to 0°, 10°, 20°, and 30°, respectively. Uniaxial compression tests were conducted at maintenance ages of 3 d, 7 d, 14 d, and 28 d, and damage models were established. The results show that (1) the uniaxial compressive strength and modulus of elasticity of the naturally delaminated specimens decrease and then increase with the increase of interlayer dip angle, and reach the lowest at the interlayer dip angle of about 20°. The uniaxial compressive strength and modulus of elasticity of sandblasted delaminated specimens with interlayer dip angle, not more than 20°, can bring positive gains in uniaxial compressive strength and modulus of elasticity, and the stable gains at high age can reach 6.4% and 39.7%, respectively. (2) The post-peak ductility of the two-layered types of specimens increases and then decreases with the increase of the dip angle between layers and reaches the optimum ductility at about 20° of dip angle. (3) The damage of the delaminated filling body is mainly in the form of tensile damage and conjugate shear damage, and the sandblasting treatment can improve the force transmission mode on the delamination surface. (4) Based on the damage evolution of the soil body with Weibull distribution, the damage instantiation model of the layered colluvial filler is constructed, which has high reliability for different interlayer dip angles. Accordingly, the findings of this study demonstrate that the addition of sandblasting can significantly reduce the degradation of the mechanical properties of the tailing sand cemented fill brought on by delamination at a slow dip angle (below 20°), and offer a helpful damage ontology model for use in engineering practice.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Strength sensitivity and failure mechanism of full tailings cemented backfills;Fu;J. Univ. Sci. Technol. Beijing,2014

2. Analysis of the influence of gradation on the strength of a cemented filling body and the cementation strength model;Qiao;Integr. Ferroelectr.,2019

3. Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures;Sari;Constr. Build. Mater.,2022

4. Study on size effect of damage evolution of cemented backfill;Cheng;Chin. J. Rock Mech. Eng.,2019

5. Monitoring the failure process of cemented paste backfill at different curing times by using a digital image correlation technique;Yang;Constr. Build. Mater.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3