Stability of a Compacted Sand Slope Model Subject to Crest Load

Author:

Djelabi Said1,Karoui Hatem2ORCID,Frikha Wissem2ORCID,Dlala Mahmoud1,Bouassida Mounir2ORCID,Ninouh Tarek3,El May Moufida1

Affiliation:

1. Laboratoire des Risques Dangereux et Naturels, Faculté des Sciences de Tunis, Université de Tunis El Manar, Foyer Universitaire, 20 Rue de Tolède, Tunis 2092, Tunisia

2. Laboratoire d’Ingénierie Géotechnique et de Géorisque LR14ES03, Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar, BP 37 Le Belvédère, Tunis 1002, Tunisia

3. Faculté de Génie Civil, Université de Larbi Tebessi, Route de Constantine, Tebessa 12022, Algeria

Abstract

Studying the stability of slopes is of great interest since it is associated to various geotechnical applications, e.g., access embankments and landslide mitigation. This paper describes the research conducted to determine the failure load applied at the top of excavations in sandy soils during the construction of deep digs without the use of retaining systems. An experimental program was performed to measure the failure load of ten laboratory-compacted sand slope models that were constructed using different slope angle values and different locations for the applied loading, which consisted of an imposed uniform rate of vertical displacement at the top of the slope. Then, a three-dimensional (3D) numerical model of the laboratory tests was developed to simulate the observed behavior during the experiments by the Plaxis 3D code. The Mohr–Coulomb (MC) and hardening soil (HS) models were used to describe the behavior of the compacted sand. The results showed that the 3D numerical simulations based on the MC model were able to predict the measured failure load within a relative difference of less than 11% for nine tested slope models, while the HS model was better in predicting the measured failure load (a relative difference of 3.5%) for only one experimental setup when the slope angle was equal to 35°. Furthermore, analytical prediction of the failure load using the yield design theory (YDT) permitted the validation of the log-spiral curve describing the observed failure surface for the tested sand slope models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference19 articles.

1. Landslides in the razorback area, New South Wales, Australia;Blong;Geogr. Ann. Ser. A Phys. Geogr.,1976

2. Huynh, K. (2023, April 13). Modélisation Des Glissements de Terrain Comme Un Problème de Bifurcation; Université de Grenoble, France. Available online: https://theses.hal.science/tel-00085919.

3. Masekanya, J.P. (2018). Stabilité Des Pentes Et Saturation Partielle. Etude Expérimentale Et Modélisation Numérique. [Ph.D. Thesis, Université Libre de Liège].

4. Allout, N., Gueddouda, M.K., and Goual, .I. (2015, January 13–15). Modélisation et simulation numérique de la stabilité des pentes dans les barrages en terre durant un séisme—Cas du barrage de Taksebt-Tizi-Ouezzou. Proceedings of the 13th Arab Structural Engineering Conference, Blida, Algeria.

5. A study of rainfall induced slope failures: Implications for various steep slope inclinations;Xuan;J. Korean Geo Environ. Soc.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3