The Generalized Mohr-Coulomb Failure Criterion

Author:

Tian Dongshuai1,Zheng Hong1

Affiliation:

1. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

Abstract

With the construction of supertall buildings such as high earth dams, the linear envelope of the Mohr-Coulomb (M-C) failure criterion fitted to lower confined pressure would significantly underestimate the loading capacity of foundations, causing a huge increase in the amount of earthwork. Given that the M-C criterion has dominated in the stability analysis of geotechnical structures, it is proposed in this study that the M-C criterion remain invariant in form but the cohesion c and the frictional factor f be related to the coefficient of intermediate principal stress b, called the Generalized Mohr-Coulomb (GMC) criterion. In other words, c and f are both functions of b, written as c(b) and f(b). In the simplest way, the GMC criterion for soils, a true three-dimensional failure criterion, can be established by using a piece of conventional triaxial apparatus. The GMC has a non-smooth strength surface like its conventional version. However, we prove from true triaxial tests and the characteristic theory of stress tensors that the failure surfaces in the stress space should be non-smooth per se for b = 0 or 1. Comparisons with other prominent failure criteria indicate that the GMC fits the test data best.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3