A Triple Deep Image Prior Model for Image Denoising Based on Mixed Priors and Noise Learning

Author:

Hu Yong1,Xu Shaoping1ORCID,Cheng Xiaohui1,Zhou Changfei1,Hu Yufeng1

Affiliation:

1. School of Mathematics and Computer Sciences, Nanchang University, Nanchang 330031, China

Abstract

Image denoising poses a significant challenge in computer vision due to the high-level visual task’s dependency on image quality. Several advanced denoising models have been proposed in recent decades. Recently, deep image prior (DIP), using a particular network structure and a noisy image to achieve denoising, has provided a novel image denoising method. However, the denoising performance of the DIP model still lags behind that of mainstream denoising models. To improve the performance of the DIP denoising model, we propose a TripleDIP model with internal and external mixed images priors for image denoising. The TripleDIP comprises of three branches: one for content learning and two for independent noise learning. We firstly use a Transformer-based supervised model (i.e., Restormer) to obtain a pre-denoised image (used as external prior) from a given noisy image, and then take the noisy image and the pre-denoised image as the first and second target image, respectively, to perform the denoising process under the designed loss function. We add constraints between two-branch noise learning and content learning, allowing the TripleDIP to employ external prior while enhancing independent noise learning stability. Moreover, the automatic stop criterion we proposed prevents the model from overfitting the noisy image and improves the execution efficiency. The experimental results demonstrate that TripleDIP outperforms the original DIP by an average of 2.79 dB and outperforms classical unsupervised methods such as N2V by an average of 2.68 dB and the latest supervised models such as SwinIR and Restormer by an average of 0.63 dB and 0.59 dB on the Set12 dataset. This can mainly be attributed to the fact that two-branch noise learning can obtain more stable noise while constraining the content learning branch’s optimization process. Our proposed TripleDIP significantly enhances DIP denoising performance and has broad application potential in scenarios with insufficient training datasets.

Funder

Natural Science Foundation of China

Jiangxi Postgraduate Innovation Special Fund Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3