Applying a Multiple-Input Single-Output Interleaved High Step-Up Converter with a Current-Sharing Device Having Different Input Currents to Harvest Energy from Multiple Heat Sources

Author:

Hwu Kuo-Ing1ORCID,Shieh Jenn-Jong2ORCID,Chen Pin-Jung1

Affiliation:

1. Department of Electrical Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao East Rd., Taipei 10608, Taiwan

2. Department of Electrical Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan

Abstract

In this paper, a thermoelectric conversion system for multiple heat sources is proposed. For design convenience, the overall system employs only a single-stage converter. Such a converter uses coupling inductors and switched capacitors to increase the voltage gain. In order to reduce the high-frequency voltage oscillation of the turn-off of the main switches created from leakage inductors, two active clamp circuits with zero voltage switching (ZVS) turn-on are employed. By doing so, although the current-sharing device with interleave control is embedded in the proposed converter, the input currents can be unequal. Therefore, the inputs of the converter can operate under individual maximum power points and transfer the energy from different thermoelectric generators (TGs) to a single load. Furthermore, the main switches have low voltage stress during the turn-off period. As for the maximum power point tracking (MPPT) method, it utilizes a three-point-weighting method to improve the tracking stability. In addition, the number of inputs of this converter can be extended. The MPPT simulation is presented to verify the feasibility as well as several experimental waveforms to demonstrate the effectiveness. The field programmable gate array (FPGA) is used as a digital control kernel to control the thermoelectric conversion system.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3