Affiliation:
1. Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
Abstract
Alzheimer’s disease (AD) represents one of the most important healthcare challenges of the current century, characterized as an expanding, “silent pandemic”. Recent studies suggest that the peripheral immune system may participate in AD development; however, the molecular components of these cells in AD remain poorly understood. Although single-cell RNA sequencing (scRNA-seq) offers a sufficient exploration of various biological processes at the cellular level, the number of existing works is limited, and no comprehensive machine learning (ML) analysis has yet been conducted to identify effective biomarkers in AD. Herein, we introduced a computational workflow using both deep learning and ML processes examining scRNA-seq data obtained from the peripheral blood of both Alzheimer’s disease patients with an amyloid-positive status and healthy controls with an amyloid-negative status, totaling 36,849 cells. The output of our pipeline contained transcripts ranked by their level of significance, which could serve as reliable genetic signatures of AD pathophysiology. The comprehensive functional analysis of the most dominant genes in terms of biological relevance to AD demonstrates that the proposed methodology has great potential for discovering blood-based fingerprints of the disease. Furthermore, the present approach paves the way for the application of ML techniques to scRNA-seq data from complex disorders, providing new challenges to identify key biological processes from a molecular perspective.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献