Water Heating and Circulating Heating System with Energy-Saving Optimization Control

Author:

Lin Feng-Chieh1,Chen Chin-Sheng1,Lin Chia-Jen12ORCID

Affiliation:

1. Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei 10608, Taiwan

2. Smart Automation Unit, TECO Electric & Machinery Co., Ltd., 10F, No. 3-1, Park St., Nan-Kang, Taipei 11503, Taiwan

Abstract

Over the past few years, due to an aging population and a longer life expectancy, traditional high-oil, high-calorie, and high-temperature culinary concepts have been widely replaced by healthier, low-temperature heating methods. However, while the key device of the Sous-Vide heating system ordinarily operates at full power to achieve the target temperature, pump speed control is not currently considered within the water heating and circulating system framework. This study develops a model for a water heating and circulating system and examines the characteristics of the lowest power point and pump speed. Building upon these results, we present the LPPT control method as a means of optimizing input power for heating. The effectiveness of this method is supported by simulations and experiments, which demonstrate a significant reduction in energy consumption. The control concept calculates the real-time input power based on the input voltage and current, and it can achieve the most efficient input power by perturbing the pump speed. It is demonstrated that applying LPPT to daily pot capacity reduces the Sous-Vide Cooker’s input power by up to 17% and achieves efficiency optimization control by removing the need to calculate the foods and other parameters of the water heating and circulating system environment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3