Study on the Thermospheric Density Distribution Pattern during Geomagnetic Activity

Author:

Yin Lirong1,Wang Lei1ORCID,Ge Lijun2,Tian Jiawei2,Yin Zhengtong3,Liu Mingzhe4ORCID,Zheng Wenfeng2ORCID

Affiliation:

1. Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA

2. School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China

3. College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China

4. School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China

Abstract

The atmospheric density of the thermosphere is a fundamental parameter for spacecraft launch and orbit control. Under magnetic storm conditions, the thermospheric atmospheric density experiences significant fluctuations, which have a negative impact on spacecraft control. Exploring thermospheric density during geomagnetic storms can help to mitigate the effects of such events. Research on the inversion of accelerometer measurements for different satellites and the variations of atmospheric density under extreme conditions is still in its infancy. In this paper, the distribution of atmospheric density during three geomagnetic storms is investigated from the inversion results of the Swarm-C accelerometer. Three major geomagnetic storms and their recovery phases are selected as case studies. The thermospheric density obtained by Swarm-C is separated into day and night regions. The empirical orthogonal function analysis method is used to study the spatiotemporal distribution of thermospheric density during geomagnetic storms. The results indicate that storms have a more significant impact on nighttime thermospheric density. The impact of magnetic storms on the temporal distribution of thermospheric density is considerable. The first-order empirical orthogonal function (EOF) time coefficient value on the day after the storm is the largest, reaching 2–3 times that before the magnetic storm. The impact of magnetic storms on atmospheric density is mainly reflected in the time distribution. The spatial distribution of atmospheric density is less affected by magnetic storms and is relatively stable in the short term. The impact of magnetic storms on the spatial distribution of nighttime thermospheric density is more significant than that of daytime regions, and the response of daytime regions to magnetic storms is slower.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3