Numerical Investigation of the Heat Transfer Characteristics and Wall Film Formation of Spray Impingement in SCR Systems

Author:

Bai Chuanxin1ORCID,Liu Kai1,Zhao Tong1ORCID,Liu Jinjin2

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

2. College of Frontier Cross, Hunan University of Technology and Business, Changsha 410205, China

Abstract

This work established a numerical model to investigate the heat transfer characteristics and wall film formation of spray impinging on the wall in the selective catalytic reduction (SCR) system. The model is developed by the Eulerian–Lagrangian approach, where the Lagrangian approach is used to represent the spray generated by a commercial non-air-assisted pressure-driven injector and the Eulerian approach is adopted to represent exhaust gas. The Stochastic Kuhnke Model is applied to spray/wall interaction. The model considers relevant processes, which include mass transfer, momentum transfer, heat transfer, droplet phase change, spray/wall interaction, and wall film formation. The numerical results compared with that of the experiment indicate that the model can accurately estimate the heat transfer characteristics of the wall surface during the spray impingement. Based on the numerical results, the causes of the spray local cooling effect and the rapid cooling effect are analyzed. The correlation between the critical transition temperature and the critical heat flux temperature for wall film formation is derived from the trends of wall temperature and heat flux. In this work, the Stochastic Kuhnke Model is applied and compared with the Kuhnke Model, which proves that it can improve the disadvantage of sudden change during the wall film formation. When the wall temperature is below the critical transition temperature, the wall film mass is sensitive to the wall temperature and increases as the wall temperature decreases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3