A Multi-Source Data Fusion Method for Assessing the Tunnel Collapse Risk Based on the Improved Dempster–Shafer Theory
-
Published:2023-05-01
Issue:9
Volume:13
Page:5606
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Wu Bo1,
Zeng Jiajia2,
Zhu Ruonan2,
Zheng Weiqiang2,
Liu Cong1
Affiliation:
1. School of Civil and Architecture Engineering, East China University of Technology, Nanchang 330013, China
2. School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
Abstract
Collapse is the main engineering disaster in tunnel construction when using the drilling and blasting method, and risk assessment is one of the important means to significantly reduce engineering disasters. Aiming at the problems of random decision-making and misjudgment of single indices in traditional risk assessment, a multi-source data fusion method with high accuracy based on improved Dempster–Shafer evidence theory (D-S model) is proposed in this study, which can realize the accurate assessment of tunnel collapse risk value. The evidence conflict coefficient K is used as the identification index, and the credibility and importance are introduced. The weight coefficient is determined according to whether the conflicting evidence is divided into two situations. The advanced geological forecast data, on-site inspection data and instrument monitoring data are trained by Cloud Model (CM), Gradient Boosting Decision Tree (GBDT) and Support Vector Classification (SVC), respectively, to obtain the initial BPA value. Combined with the weight coefficient, the identified conflict evidence is adjusted, and then the evidence from different sources is fused to obtain the overall collapse risk value. Finally, the accuracy is selected to verify the proposed method. The proposed method has been successfully applied to Wenbishan Tunnel. The results show that the evaluation accuracy of the proposed multi-source information fusion method can reach 88%, which is 16% higher than that of the traditional D-S model and more than 20% higher than that of the single-source information method. The high-precision multi-source data fusion method proposed in this paper has good universality and effectiveness in tunnel collapse risk assessment.
Funder
Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
“Double Thousand Plan” Innovation Leading Talent Project of Jiangxi Province
Jiangxi Province Graduate Innovation Special Fund Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference30 articles.
1. Risk assessment of mountain tunnel collapse based on rough set and conditional information entropy;Chen;Rock Soil Mech.,2019
2. Application of AHP-LEC Method to Risk Assessment of Subway Tunnel Construction;Zhang;J. Mil. Transp. Univ.,2018
3. Risk Assessment of Tunnel Collapse by EW-AHP and Unascertained Measure Theory;Zhai;Saf. Environ. Eng.,2020
4. Correction to: Some mathematical concepts of the analytic hierarchy process;Saaty;Behaviormetrika,2021
5. Study on risk assessment model of collapse during construction of mountain tunnel and its application;Zhang;J. Saf. Sci. Technol.,2019