Synergistic Interactions between Linalool and Some Antimycotic Agents against Candida spp. as a Basis for Developing New Antifungal Preparations

Author:

Biernasiuk Anna1ORCID,Malm Anna1ORCID

Affiliation:

1. Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland

Abstract

The incidence of superficial infections, including oral candidiasis, has recently increased significantly. Their treatment is quite difficult due to the growing resistance of Candida spp. to antifungal agents. Therefore, it is necessary to search for novel antimycotics or alternative antifungal therapies. The purpose of the study was to evaluate the antifungal activity of natural terpene—linalool (LIN)—against both reference fungi belonging to yeasts and Candida spp. isolates from the oral cavities of immunocompromised, hemato-oncology patients. Moreover, its mechanism of action and interactions with selected antifungal drugs or antiseptics were investigated. The broth microdilution technique, ergosterol or sorbitol tests, and a checkerboard method were used for individual studies. The LIN showed potential activity toward studied strains of fungi with a minimal inhibitory concentration (MIC) in the range of 0.5–8 mg/mL and fungicidal effect. This compound was also found to bind to ergosterol in the yeast cell membrane. Additionally, the interactions between LIN with antiseptics such as chlorhexidine, cetylpyridinium, and triclosan showed beneficial synergistic effect (with FIC = 0.3125–0.375), or an additive effect with silver nitrate and chlorquinaldol (FIC = 0.625–1). Moreover, statistically significant differences in MIC values were found for the synergistic combinations of LIN. No interaction was indicated for nystatin. These results confirm that the LIN seems to be a promising plant component used alone or in combination with other antimycotics in the prevention and treatment of superficial fungal infections. However, further clinical trials are required.

Funder

Medical University of Lublin

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3