NGLSFusion: Non-Use GPU Lightweight Indoor Semantic SLAM

Author:

Wan Le12ORCID,Jiang Lin13ORCID,Tang Bo23,Li Yunfei12,Lei Bin13,Liu Honghai4

Affiliation:

1. Key Education Laboratory of Ministry of Metallurgical Equipment and Control, Wuhan University of Science and Technology, Wuhan 430081, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

3. Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan 430081, China

4. School of Mechanical and Electrical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

Perception of the indoor environment is the basis of mobile robot localization, navigation, and path planning, and it is particularly important to construct semantic maps in real time using minimal resources. The existing methods are too dependent on the graphics processing unit (GPU) for acquiring semantic information about the indoor environment, and cannot build the semantic map in real time on the central processing unit (CPU). To address the above problems, this paper proposes a non-use GPU for lightweight indoor semantic map construction algorithm, named NGLSFusion. In the VO method, ORB features are used for the initialization of the first frame, new keyframes are created by optical flow method, and feature points are extracted by direct method, which speeds up the tracking speed. In the semantic map construction method, a pretrained model of the lightweight network LinkNet is optimized to provide semantic information in real time on devices with limited computing power, and a semantic point cloud is fused using OctoMap and Voxblox. Experimental results show that the algorithm in this paper ensures the accuracy of camera pose while speeding up the tracking speed, and obtains a reconstructed semantic map with complete structure without using GPU.

Funder

Lin Jiang

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3