Topology Duration Optimization for UAV Swarm Network under the System Performance Constraint

Author:

Zhou Rui12,Zhang Xiangyin12,Song Deyu12,Qin Kaiyu12ORCID,Xu Limei12

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

Abstract

Network topology construction plays an important role in the application of large-scale unmanned aerial vehicle (UAV) swarm. Current researches usually perform the topology construction in terms of criteria of nodes energy consumption, transmission delay and network throughput, etc. However, another important criterion, the stability of swarm network topology, which is much critical for dynamic scenarios, has not been fully considered. In this paper, a novel topology construction method for UAV swarm network based on the criterion of topology duration is proposed. Specially, the topology construction of swarm network is formulated as an optimization problem of maximizing the topology duration while satisfying the constraints of certain network throughput, end-to-end delay, and nodes energy consumption. Then, a novel Group Trend Similarity based double-head Clustering method(GTSC) is employed to solve this problem, in which group similarity of movement, intra- and inter-cluster distance, node forwarding delay, and energy strategy are comprehensively taken into account. The proposed method is effective when used to perform the network topology construction for UAV swarm, which is verified by the simulation results. Furthermore, in comparison with representative algorithms, the proposed GTSC method exhibits better performance on topology duration, network throughput, end-to-end delay and energy consumption balance especially in a large-scale swarm scenarios.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3