A Three-Dimensional Elastoplastic Constitutive Model for Geomaterials

Author:

Tian Dongshuai1,Zheng Hong1

Affiliation:

1. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

Abstract

The Mohr-Coulomb (M-C) failure criterion has been a popular choice for geotechnical analysis because of its simplicity and ease of use. The fact that the M-C criterion disregards the intermediate principal stress’s impact is a significant drawback. As a result, the M-C criterion is only applied to materials under biaxial stress. This paper presents a three-dimensional version of the M-C criterion. The proposed criterion, called the Generalized Mohr-Coulomb (GMC) criterion, considers the intermediate principal stress’s effect, in addition to inheriting the original M-C criterion’s benefits. We obtained the conditions that the strength parameters must satisfy when the GMC criterion fulfills the π plane’s convexity. The GMC criterion can better describe geotechnical materials’ strengths under general stress conditions. Based on an implicit algorithm, the user material subroutine (UMAT) of the three-dimensional GMC model was developed in ABAQUS using the Fortran programming language. The established elastoplastic model’s validity and the program’s accuracy were examined using numerical simulation. Finally, a numerical simulation of a three-dimensional tunnel excavation under various working conditions was performed. The calculation results from the GMC model are precise and have some engineering-related practical significance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. Novel 3D failure criterion for rock materials;Gao;Int. J. Geomech.,2019

2. Mohr–Coulomb failure criterion;Labuz;Rock Mech. Rock Eng.,2012

3. Nonlinear unified strength criterion for concrete under three-dimensional stress states;Du;J. Eng. Mech.,2010

4. Advances in strength theories for materials under complex stress state in the 20th Century;Yu;Adv. Mech.,2004

5. Chen, W., and Saleeb, A.F. (2013). Constitutive Equations for Engineering Materials: Elasticity and Modeling, Elsevier.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3