Multivariate Relationship in Big Data Collection of Ocean Observing System

Author:

Pietropolli Gloria12ORCID,Manzoni Luca12ORCID,Cossarini Gianpiero2ORCID

Affiliation:

1. Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, H2bis Building, Via Alfonso Valerio 12/1, 34127 Trieste, Italy

2. The National Institute of Oceanography and Experimental Geophysics, Borgo Grotta Gigante 42/c, 34010 Sgonico, Italy

Abstract

Observing the ocean provides us with essential information necessary to study and understand marine ecosystem dynamics, its evolution and the impact of human activities. However, observations are sparse, limited in time and space coverage, and unevenly collected among variables. Our work aims to develop an improved deep-learning technique for predicting relationships between high-frequency and low-frequency sampled variables. Specifically, we use a larger dataset, EMODnet, and train our model for predicting nutrient concentrations and carbonate system variables (low-frequency sampled variables) starting from information such as sampling time and geolocation, temperature, salinity and oxygen (high-frequency sampled variables). Novel elements of our application include (i) the calculation of a confidence interval for prediction based on deep ensembles of neural networks, and (ii) a two-step analysis for the quality check of the input data. The proposed method proves capable of predicting the desired variables with relatively small errors, outperforming the results obtained by the current state-of-the-art models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Global oceans governance: New and emerging issues;Campbell;Annu. Rev. Environ. Resour.,2016

2. Ocean temperatures chronicle the ongoing warming of Earth;Wijffels;Nat. Clim. Chang.,2016

3. Climate-change–driven accelerated sea-level rise detected in the altimeter era;Nerem;Proc. Natl. Acad. Sci. USA,2018

4. Ocean deoxygenation in a warming world;Keeling;Annu. Rev. Mar. Sci.,2010

5. Euzen, A., Gaill, F., Lacroix, D., and Cury, O. (2017). The Ocean Revealed, CNRS.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3