Evolution Model of Coal Failure Using Energy Dissipation under Cyclic Loading/Unloading

Author:

Wang Chunlai1,Zuo Chang1,Zhao Ze1

Affiliation:

1. School of Energy and Mining Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

The damage and fracture of coal is accompanied by a complex energy conversion process, and these different stages of energy evolution are closely related to coal failure. In this paper, an evolution model describing the behavior of coal failure was proposed using the energy dissipation under cyclic loading/unloading. The energy growth pattern and energy consumption characteristics of the coal fracture were analyzed under cyclic loading/unloading. An evolution model of the energy behavior of coal fracture was established. The damage variables of energy dissipation were defined, and a theoretical model was established. The parameters included the relationship between the energy state, damage state, and strength state according to the uniaxial cyclic loading/unloading test. The results show that there are energy excitation and inhibition effects in the process of coal fracture; that is, the accumulation rate and level of energy are affected by the energy storage state, and the energy storage rate changes in the mode of “low promotion and high inhibition”. The abrupt increase in dissipated energy can be regarded as the precursor of coal fracture. Based on the analysis of the characteristics of the damage and failure state and dissipated energy, the discriminant equation for the stability of the coal energy state was constructed; it is a meaningful discovery for predicting and evaluating coal failure.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3