Aging of PA12 Powder in Powder Bed Fusion

Author:

Gazzerro Achille1,Polini Wilma1ORCID,Sorrentino Luca1ORCID,Giuliano Gillo1ORCID

Affiliation:

1. Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Via G. di Biasio 43, 03043 Cassino, Italy

Abstract

Powder Bed Fusion (PBF) is a popular additive manufacturing technology due to its high build resolution and ability to produce microscale geometries without the use of additional support. Despite the many benefits of PBF, there are still some limitations associated with the materials to be built. A critical industrial limit is the aging of PA12 powder, which is the degradation of its physical and chemical properties due to high temperatures and long building cycles of the powder that is not directly fused into the final part but supports the part under construction. This powder is now being used to make another part in order to reduce manufacturing costs. The mechanical properties of the built parts are reduced due to the reused powder. The current study aims to characterize powder aging using experimental tests such as Differential Scanning Calorimetry, Dynamic Mechanical Analysis, and Thermogravimetric Analysis to define the physical and chemical parameters of the powder that will be used inside a simulation software to optimize the process.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable Design in the Era of Additive Manufacturing: A Review;Lecture Notes on Multidisciplinary Industrial Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3