Advanced Technologies for Geosite Visualization and Valorization: A Review

Author:

Pasquaré Mariotto Federico1ORCID,Corti Noemi2ORCID,Drymoni Kyriaki2ORCID

Affiliation:

1. Department of Human and Innovation Sciences, Insubria University, 21100 Como, Italy

2. Department of Earth and Environmental Sciences, Milan-Bicocca University, 20126 Milan, Italy

Abstract

This review attempts to summarize contributions by authors who, in the last decade, have dedicated their efforts to making geoheritage accessible to the public. Geoheritage is composed of geosites, which are, nowadays, real milestones on which field-based geological education can be conducted. However, the COVID-19 pandemic in particular has made it clear that a new paradigm is needed; a series of tools must be introduced and increasingly used to make it possible for potential users, be they academics, students, or the lay public, to experience geosites from locations that can be thousands of kilometers away. All these have been achieved over time by a wide range of evolving techniques and advanced technologies such as GIS tools, virtual reality applications and further innovative technologies such as WebGIS platforms accompanied by appropriate navigation tools (VR headsets and thumbsticks). The viewers, in this way, are provided with a complete view of a virtual geosite, which enables visualizing its characteristics at different scales. VR technologies, especially, have revealed a high degree of satisfaction, based on feedback collected from VR geosite visualization events, both by scientists, students and the general public, and could be the forefront of geosite visualization and valorization in the near future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference121 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3