Equilibrium Optimizer-Based Joint Time-Frequency Entropy Feature Selection Method for Electric Loads in Industrial Scenario

Author:

Zhou Mengran1,Yao Xiaokang1ORCID,Zhu Ziwei1,Hu Feng1ORCID

Affiliation:

1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China

Abstract

A prerequisite for refined load management, crucial for intelligent energy management, is the precise classification of electric loads. However, the high dimensionality of electric load samples and poor identification accuracy of industrial scenarios make it difficult to be used in actual production. As such, this research presents a selection approach equilibrium optimizer-based joint time-frequency entropy feature selection method for electric loads in industrial scenarios to address these issues. The method first introduces entropy value features based on extracting time-frequency domain features and then uses an equilibrium optimizer (EO) to screen the joint feature set. A Chinese cement plant was chosen as the acquisition site for the experiments, and the low-frequency data from power equipment were gathered to form an original dataset for power analysis. The features screened by the EO were used as model inputs to verify the effectiveness of the EO on the joint feature set under K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and discriminant analysis (DA) models. Experimental results show that introducing entropy value features for the joint feature set can significantly improve the classification performance. The average accuracy of the features screened by the EO was as high as 95.58% on SVM, while the computation time was 0.75 s. Therefore, for industrial electricity scenarios, the approach suggested in this research can enhance the identification accuracy of electric loads and significantly reduce the computation time of the model to a great extent. This has essential research significance for intelligent energy management in real industrial scenarios.

Funder

National Key Research and Development Program of China

Energy Internet Joint Fund Project of Anhui Province

Major Science and Technology Program of Anhui Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3