Early Predictability of Grasping Movements by Neurofunctional Representations: A Feasibility Study

Author:

Jakubowitz Eike1,Feist Thekla1,Obermeier Alina1,Gempfer Carina1,Hurschler Christof1,Windhagen Henning12,Laves Max-Heinrich34

Affiliation:

1. Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany

2. Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany

3. Institute of Mechatronic Systems, Leibniz University Hannover, An der Universität 1, 30823 Garbsen, Germany

4. Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 38987 Hamburg, Germany

Abstract

Human grasping is a relatively fast process and control signals for upper limb prosthetics cannot be generated and processed in a sufficiently timely manner. The aim of this study was to examine whether discriminating between different grasping movements at a cortical level can provide information prior to the actual grasping process, allowing for more intuitive prosthetic control. EEG datasets were captured from 13 healthy subjects who repeatedly performed 16 activities of daily living. Common classifiers were trained on features extracted from the waking-state frequency and total-frequency time domains. Different training scenarios were used to investigate whether classifiers can already be pre-trained by base networks for fine-tuning with data of a target person. A support vector machine algorithm with spatial covariance matrices as EEG signal descriptors based on Riemannian geometry showed the highest balanced accuracy (0.91 ± 0.05 SD) in discriminating five grasping categories according to the Cutkosky taxonomy in an interval from 1.0 s before to 0.5 s after the initial movement. Fine-tuning did not improve any classifier. No significant accuracy differences between the two frequency domains were apparent (p > 0.07). Neurofunctional representations enabled highly accurate discrimination of five different grasping movements. Our results indicate that, for upper limb prosthetics, it is possible to use them in a sufficiently timely manner and to predict the respective grasping task as a discrete category to kinematically prepare the prosthetic hand.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3