On the Use of Population Data for Training Seasonal Local Models-Based Glucose Predictors: An In Silico Study

Author:

Aslan Antonio1,Díez José-Luis12ORCID,Laguna Sanz Alejandro José2ORCID,Bondia Jorge12ORCID

Affiliation:

1. Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain

2. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain

Abstract

Most advanced technologies for the treatment of type 1 diabetes, such as sensor-pump integrated systems or the artificial pancreas, require accurate glucose predictions on a given future time-horizon as a basis for decision-making support systems. Seasonal stochastic models are data-driven algebraic models that use recent history data and periodic trends to accurately estimate time series data, such as glucose concentration in diabetes. These models have been proven to be a good option to provide accurate blood glucose predictions under free-living conditions. These models can cope with patient variability under variable-length time-stamped daily events in supervision and control applications. However, the seasonal-models-based framework usually needs of several months of data per patient to be fed into the system to adequately train a personalized glucose predictor for each patient. In this work, an in silico analysis of the accuracy of prediction is presented, considering the effect of training a glucose predictor with data from a cohort of patients (population) instead of data from a single patient (individual). Feasibility of population data as an input to the model is asserted, and the effect of the dataset size in the determination of the minimum amount of data for a valid training of the models is studied. Results show that glucose predictors trained with population data can provide predictions of similar magnitude as those trained with individualized data. Overall median root mean squared error (RMSE) (including 25% and 75% percentiles) for the predictor trained with population data are {6.96[4.87,8.67], 12.49[7.96,14.23], 19.52[10.62,23.37], 28.79[12.96,34.57], 32.3[16.20,41.59], 28.8[15.13,37.18]} mg/dL, for prediction horizons (PH) of {15,30,60,120,180,240} min, respectively, while the baseline of the individually trained RMSE results are {6.37[5.07,6.70], 11.27[8.35,12.65], 17.44[11.08,20.93], 22.72[14.29,28.19], 28.45[14.79,34.38], 25.58[13.10,36.60]} mg/dL, both training with 16 weeks of data. Results also show that the use of the population approach reduces the required training data by half, without losing any prediction capability.

Funder

Ministerio de Ciencia e Innovación

European Union – European Regional Development Fund

CIBER -Consorcio Centro de Investigación Biomédica en Red- group

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital from Generalitat Valenciana

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3