Design of an Intelligent Vehicle Behavior Decision Algorithm Based on DGAIL

Author:

Jiang Junfeng1,Rui Yikang1,Ran Bin1,Luo Peng2

Affiliation:

1. School of Transportation, Southeast University, Nanjing 211189, China

2. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China

Abstract

With the development of AI, the intelligence level of vehicles is increasing. Structured roads, as common and important traffic scenes, are the most typical application scenarios for realizing autonomous driving. The driving behavior decision-making of intelligent vehicles has always been a controversial and difficult research topic. Currently, the mainstream decision-making methods, which are mainly based on rules, lack adaptability and generalization to the environment. Aimed at the particularity of intelligent vehicle behavior decisions and the complexity of the environment, this thesis proposes an intelligent vehicle driving behavior decision method based on DQN generative adversarial imitation learning (DGAIL) in the structured road traffic environment, in which the DQN algorithm is utilized as a GAIL generator. The results show that the DGAIL method can preserve the design of the reward value function, ensure the effectiveness of training, and achieve safe and efficient driving on structured roads. The experimental results show that, compared with A3C, DQN and GAIL, the model based on DGAIL spends less average training time to achieve a 95% success rate in the straight road scene and merging road scene, respectively. Apparently, this algorithm can effectively accelerate the selection of actions, reduce the randomness of actions during the exploration, and improve the effect of the decision-making model.

Funder

Key R&D Program of Shandong Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3