SybilHP: Sybil Detection in Directed Social Networks with Adaptive Homophily Prediction

Author:

Lu Haoyu1,Gong Daofu1,Li Zhenyu1,Liu Feng12,Liu Fenlin1

Affiliation:

1. Henan Key Laboratory of Cyberspace Situation Awareness, Zhengzhou 450001, China

2. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Worries about the increasing number of Sybils in online social networks (OSNs) are amplified by a range of security issues; thus, Sybil detection has become an urgent real-world problem. Lightweight and limited data-friendly, LBP (Loopy Belief Propagation)-based Sybil-detection methods on the social graph are extensively adopted. However, existing LBP-based methods that do not utilize node attributes often assume a global or predefined homophily strength of edges in the social graph, while different user’s discrimination and preferences may vary, resulting in local homogeneity differences. Another issue is that the existing message-passing paradigm uses the same edge potential when propagating belief to both sides of a directed edge, which does not agree with the trust interaction in one-way social relationships. To bridge these gaps, we present SybilHP, a Sybil-detection method optimized for directed social networks with adaptive homophily prediction. Specifically, we incorporate an iteratively updated edge homophily estimation into the belief propagation to better adapt to the personal preferences of real-world social network users. Moreover, we endow message passing on edges with directionality by a direction-sensitive potential function design. As a result, SybilHP can better capture the local homophily and direction pattern in real-world social networks. Experiments show that SybilHP works with high detection accuracy on synthesized and real-world social graphs. Compared with various state-of-the-art graph-based methods on a large-scale Twitter dataset, SybilHP substantially outperforms existing methods.

Funder

the National Natural Science Foundation of China

the Science and Technology Research Project of Henan Province, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3