The Accuracy of Dynamic Sound Source Localization and Recognition Ability of Individual Head-Related Transfer Functions in Binaural Audio Systems with Head Tracking

Author:

Planinec Vedran1ORCID,Reijniers Jonas2,Horvat Marko1ORCID,Peremans Herbert2,Jambrošić Kristian1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia

2. Department of Engineering Management, Universiteit Antwerpen, 2000 Antwerp, Belgium

Abstract

The use of audio systems that employ binaural synthesis with head tracking has become increasingly popular, particularly in virtual reality gaming systems. The binaural synthesis process uses the Head-Related Transfer Functions (HRTF) as an input required to assign the directions of arrival to sounds coming from virtual sound sources in the created virtual environments. Generic HRTFs are often used for this purpose to accommodate all potential listeners. The hypothesis of the research is that the use of individual HRTF in binaural synthesis instead of generic HRTF leads to improved accuracy and quality of virtual sound source localization, thus enhancing the user experience. A novel methodology is proposed that involves the use of dynamic virtual sound sources. In the experiments, the test participants were asked to determine the direction of a dynamic virtual sound source in both the horizontal and vertical planes using both generic and individual HRTFs. The gathered data are statistically analyzed, and the accuracy of localization is assessed with respect to the type of HRTF used. The individual HRTFs of the test participants are measured using a novel and efficient method that is accessible to a broad range of users.

Funder

Croatian Science Foundation

Flemish Agency for Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3