Overcoming Adverse Conditions in Rescue Scenarios: A Deep Learning and Image Processing Approach

Author:

Di Maro Alberto12ORCID,Azpiroz Izar1ORCID,Biain Xabier Oregui1,Longo Giuseppe2,Olaizola Igor Garcia1ORCID

Affiliation:

1. Vicomtech Foundation, Basque Research Technology Alliance (BRTA), 20009 Donostia, Spain

2. Department of Physics, Monte Sant’Angelo Campus, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy

Abstract

This paper presents a Deep Learning (DL) and Image-Processing (IP) pipeline that addresses exposure recovery in challenging lighting conditions for enhancing First Responders’ (FRs) Situational Awareness (SA) during rescue operations. The method aims to improve the quality of images captured by FRs, particularly in overexposed and underexposed environments while providing a response time suitable for rescue scenarios. The paper describes the technical details of the pipeline, including exposure correction, segmentation, and fusion techniques. Our results demonstrate that the pipeline effectively recovers details in challenging lighting conditions, improves object detection, and is efficient in high-stress, fast-paced rescue situations.

Funder

EU Horizon 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Enhancement of low exposure images via recursive histogram equalization algorithms;Singh;Optik,2015

2. Contextual and variational contrast enhancement;Celik;IEEE Trans. Image Process.,2011

3. Multi-exposure optimized contrast and brightness balance color image enhancement;Bhandari;Digit. Signal Process.,2022

4. Goyal, V., and Shukla, A. (2021). Smart Innovations in Communication and Computational Sciences: Proceedings of ICSICCS 2020, Springer.

5. The retinex theory of color vision;Land;Sci. Am.,1977

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scheme of Autonomous Victim Search at Sea Based on Deep Learning Technique Using Cooperative Networked UAVs;2023 12th International Conference on Control, Automation and Information Sciences (ICCAIS);2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3