JSUM: A Multitask Learning Speech Recognition Model for Jointly Supervised and Unsupervised Learning

Author:

Yolwas Nurmemet12,Meng Weijing12ORCID

Affiliation:

1. Xinjiang Multilingual Information Technology Laboratory, Urumqi 830017, China

2. College of Information Science and Engineering, Xinjiang University, Urumqi 830017, China

Abstract

In recent years, the end-to-end speech recognition model has emerged as a popular alternative to the traditional Deep Neural Network—Hidden Markov Model (DNN-HMM). This approach maps acoustic features directly onto text sequences via a single network architecture, significantly streamlining the model construction process. However, the training of end-to-end speech recognition models typically necessitates a significant quantity of supervised data to achieve good performance, which poses a challenge in low-resource conditions. The use of unsupervised representation significantly reduces this necessity. Recent research has focused on end-to-end techniques employing joint Connectionist Temporal Classification (CTC) and attention mechanisms, with some also concentrating on unsupervised presentation learning. This paper proposes a joint supervised and unsupervised multi-task learning model (JSUM). Our approach leverages the unsupervised pre-trained wav2vec 2.0 model as a shared encoder that integrates the joint CTC-Attention network and the generative adversarial network into a unified end-to-end architecture. Our method provides a new low-resource language speech recognition solution that optimally utilizes supervised and unsupervised datasets by combining CTC, attention, and generative adversarial losses. Furthermore, our proposed approach is suitable for both monolingual and cross-lingual scenarios.

Funder

National Natural Science Foundation of China—Research on Key Technologies of Speech Recognition of Chinese and Western Asian Languages under Resource Constraints

National Language Commission Key Project of China—Research on Speech Keyword Search Technology of Chinese and Western Asian Languages

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3