An Improved Direct Predictive Torque Control for Torque Ripple and Copper Loss Reduction in SRM Drive

Author:

Sheng Linhao1,Wang Guofeng1,Fan Yunsheng1ORCID,Liu Jian1,Liu Di1,Mu Dongdong1

Affiliation:

1. College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116000, China

Abstract

This paper introduces a direct predictive torque control (DPTC) method to minimize the torque ripple and copper loss of the switched reluctance motor (SRM). Generally, there is a problem with torque ripple during the SRM’s commutation. In this method, the commutation optimization is provided by a direct predictive torque control algorithm. Firstly, the reachable range of phase torques is predicted and the boundary of two continuous phases is modified. By dividing the torque range directly to determine the torque allocation set, the suppression of torque ripple becomes simple. Secondly, considering the optimization problem of copper loss during commutation, a cost function only related to the phase current is constructed. Further, the minimization of copper loss can be achieved by solving the cost function, and the work of setting weight parameters is not required. Finally, the proposed DPTC method is tested by simulation and experiment in a three-phase 12/8-pole SRM drive system and the results are compared with the existing predictive torque control methods. The results show that the proposed method has less torque ripple and copper loss, which effectively improves the torque control performance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Pilot Base Construction and Pilot Verification Plan Program of Liaoning Province of China

Key Development Guidance Program of Liaoning Province of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3