Trust-Aware Evidence Reasoning and Spatiotemporal Feature Aggregation for Explainable Fake News Detection

Author:

Chen Jing1,Zhou Gang1,Lu Jicang1,Wang Shiyu1,Li Shunhang1

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China

Abstract

Fake news detection has become a significant topic based on the fast-spreading and detrimental effects of such news. Many methods based on deep neural networks learn clues from claim content and message propagation structure or temporal information, which have been widely recognized. However, firstly, such models ignore the fact that information quality is uneven in propagation, which makes semantic representations unreliable. Additionally, most models do not fully leverage spatial and temporal structures in combination. Finally, internal decision-making processes and results are non-transparent and unexplained. In this study, we developed a trust-aware evidence reasoning and spatiotemporal feature aggregation model for more interpretable and accurate fake news detection. Specifically, we first designed a trust-aware evidence reasoning module to calculate the credibility of posts based on a random walk model to discover high-quality evidence. Next, from the perspective of spatiotemporal structure, we designed an evidence-representation module to capture the semantic interactions granularly and enhance the reliable representation of evidence. Finally, a two-layer capsule network was designed to aggregate the implicit bias in evidence while capturing the false portions of source information in a transparent and interpretable manner. Extensive experiments on two benchmark datasets indicate that the proposed model can provide explanations for fake news detection results, and can also achieve better performance, boosting the F1-score 3.5% on average.

Funder

Henan Province Science and Technology Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3