Identification and Mitigation of Subsidence and Collapse Hazards in Karstic Areas: A Case Study in Alcalá de Ebro (Spain)

Author:

Gracia Alberto1,Torrijo Francisco Javier2ORCID,Garzón-Roca Julio3ORCID,Pérez-Picallo Miguel1ORCID,Alonso-Pandavenes Olegario4ORCID

Affiliation:

1. Associated Technical Consultants, C.T.A., S.A.P., 50006 Zaragoza, Spain

2. Department of Geotechnical Engineering, Research Centre for Architecture, Heritage and Management for Sustainable Development (PEGASO), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

3. Department of Geodynamics, Stratigraphy and Paleontology, Faculty of Geology, Complutense University of Madrid, 28040 Madrid, Spain

4. Geology and Mining Engineering Faculty-FIGEMPA, Central University of Ecuador, Quito 170521, Ecuador

Abstract

Sinkholes are a severe problem in urban areas located in karstic regions, especially where evaporitic rocks such as gypsum exist. Identification and proposal of mitigation measures are needed to reduce this geo-hazard effect on buildings and social urban living. This paper presents a case study of the town of Alcalá de Ebro (Spain), which is located in the highest sinkhole risk region of Europe. The identification and mitigation of a series of sinkholes that appeared are analyzed. The former involves a geological investigation, including boreholes, field tests and geophysics. The latter is addressed by the use of geogrids, mortar injections and polyurethane injections. A complementary finite element analysis is carried out to set the ground behavior associated with the sinking process and assess its future evolution. The Ebro River appears to be the main cause of sinkholes, and results show that ground treatments applied were successful in their purpose, as there are no apparent deformations indicating that the subsidence or sinking process is still active in the area. The use of different techniques depending on the size of the sinkhole, the objectives pursued and the element affected is discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3