Characterizing Internal Flow Field in Binary Solution Droplet Combustion with Micro-Particle Image Velocimetry

Author:

Huang Bingyao1,Zhang Haodong1,Liu Zundi1,Yang Xiaoyuan1,Li Wei1ORCID,Li Yuyang1ORCID

Affiliation:

1. Institute of Aerospace Propulsion, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Droplet internal flow participates in liquid-phase mass transfer during multicomponent solution droplet combustion. In this work, internal flow fields in the binary droplet combustion of two polyoxymethylene dimethyl ethers (CH3O(CH2O)nCH3, n ≥ 1, abbreviated as PODEn), i.e., PODE2 and PODE4, are characterized using micro-particle image velocimetry (Micro-PIV). The buoyancy-driven upward vapor flow around the droplet is found to initiate two opposite radial flows in the droplet, which form two vortex cores near the surface, while the gravitational effect and Marangoni effect resulting from the content and temperature gradients in the binary droplets can induce disturbance to the two flows. The binary droplets have comparable spatially averaged flow velocities at the stable evaporation stage to those of pure droplets, which are around 3 mm/s. The velocity curves are more fluctuant and tend to slightly increase and reach the peak values at around 250 ms, and then decrease until droplet atomization. The flow velocities in the droplet interior are generally higher than those near the droplet surface, forming a parabolic velocity profile along the horizontal radial direction. The peak velocity first increases to 5–9 mm/s as the radial flow and vortex structure start to form and then decreases to around 3 mm/s until droplet atomization. The radial flow with a spatially averaged velocity of 3 mm/s can run around one lap during the stable evaporation stage, which implies that the convection-induced mass transfer is relatively weak, and consequently, the content gradient of the binary droplet is still mainly controlled by mass diffusion.

Funder

National Natural Science Foundation of China

Science Center for Gas Turbine Project

Oceanic Interdisciplinary Program of Shanghai Jiao Tong University

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3